Finite element simulation of fretting wear- fatigue interaction in spline couplings

نویسندگان

  • J. Ding
  • S. B. Leen
  • E. J. Williams
  • P. H. Shipway
چکیده

This paper describes a finite element based method for simulating the effects of material removal, associated with fretting wear, on fretting fatigue parameters in a spline coupling. An incremental wear simulation technique is implemented with a single tooth finite element model of the coupling for symmetric loading, assuming equal wear on all teeth, using a comparatively coarse mesh model, for computational efficiency. A surface interpolation technique is implemented to map the predicted distributions of wear onto a non-symmetric, 360u (18-tooth) model, with detailed refinement on one tooth, to predict the effect of wear on the evolution of stress, strain and fatigue parameters and on subsequent life prediction. The life prediction is based on a critical plane multiaxial fatigue parameter approach, along with cumulative damage for combined load cycles and for wear induced changes in the fatigue parameters. Furthermore, the effect of wear due to the rotating bending moment and fluctuating torque on fretting fatigue damage accumulation is presented. Low frequency, torque and axial loading induced wear, leading to gross slip conditions on all teeth, is predicted to reduce fretting fatigue parameters and hence increase life. In contrast, higher frequency, rotating moment and fluctuating torque induced wear, corresponding to partial slip conditions, is predicted to increase fretting fatigue parameters away from the contact edges and hence lead to fretting fatigue cracking away from the contact edges and, for the case studied here, to a reduction in predicted life, as observed experimentally. The results are interpreted vis-à-vis published test data for scaled aeroengine splines.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Crack Behavior of the Aluminum Alloy 2024 Under Fretting Conditions

The initial stage of fretting fatigue crack growth is significantly influenced by tangential force induced by fretting action along the contact surface where a mixed-mode crack growth is involved. Fretting crack behavior of aluminum alloy 2024 was studied, taking into account the problem of contact asperities. Finite element was used for the determination of the stress field near the contact su...

متن کامل

Numerical Modeling of Fretting Wear

In this paper, a review of some techniques proposed in the literature for modelling fretting wear is presented. Fretting wear occurs when surfaces are degraded and materials are removed due to a small relative oscillatory motion between two contact surfaces. Due to the continuous change in the shape of a structure during its lifetime, the design of engineering components subjected to fretting w...

متن کامل

NUMERICAL INVESTIGATION OF CRACK ORIENTATION IN THE FRETTING FATIGUE OF A FLAT ROUNDED CONTACT

The growth of slant cracks by fretting fatigue of a half plane in contact with a flat rounded pad was studied. The mode I and mode II stress intensity factors for cracks of various lengths and directions were calculated using the semi-analytical method of the distribution of dislocations, and their cumulative effect on the crack growth was investigated using the strain energy density criterion....

متن کامل

Extended Finite Element Method for Fretting Fatigue Crack Propagation

In this paper, the extended finite element method (X-FEM) is considered for the analysis of fretting fatigue problems. A two-dimensional implementation of the XFEM is carried out within the finite element software ABAQUS by means of user subroutines, and crack propagation in fretting fatigue problems is investigated. On utilizing the non-linear contact capabilities of this code, the numerical t...

متن کامل

بررسی تاثیر فیلت در مقاومت خستگی سایشی در انطباق محور و توپی با استفاده از معیارهای مختلف خستگی چند محوره و پارامتر دوم خستگی سایشی

The present paper studies the effect of creating a fillet on fretting fatigue strength of an axle, using different multiaxial fatigue criteria and fretting fatigue damage parameter. Finite element method is applied to obtain stress and strain in the axle and the results obtained from modeling are compared with the experimental test data available in literature. The results show that fretting fa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008